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121 Jericho Rd 25lit@weston.org
Weston, MA 02493 TomLi.org

EDUCATION

Weston High School GPA: 3.96/4.0 ACT: 35
AP Calculus BC, AP Physics C: Mechanics and E&M, AP Chemistry, AP Computer Science, AP World History,

AP U.S. History, AP Psychology, AP Biology, AP European History, AP Statistics, AP Spanish, AP English

PROJECTS

Functional Annotation of Variants Online Resource (FAVOR) Mar. 2023 - Present
Prof. Xihong Lin, Harvard University

• Aggregated large genomic data (9 billion single nucleotide variants, 80 million observed genetic inser-
tions/deletions, and 160 columns of variant annotations) into FAVOR (https://favor.genohub.org), an online
database widely used by medical researchers to connect disease traits with human genetic information.

• Conceptualized and developed a natural language interpretation model (FAVOR-GPT) to easily query and
extract relevant information from the database and generate insights, reducing the barrier of entry and
making the database more accessible to researchers worldwide.

• Presented research at The Impact of Genomic Variation on Function (IGVF) Consortium and published a
first-author paper in peer-reviewed Bioinformatics Advances, 2024, vbae143.

Sign Language Recognition Jan. 2021 - Aug. 2023
https://github.com/hsteven-archive/sign lang

• Worked with another high-schooler to build a computer vision program using Python to recognize and
translate American Sign Language (ASL) into English in real-time.

• The model can be used to automatically caption and translate videos for accessibility or to teach ASL more
effectively, with the goal of improving communication for the deaf and hard of hearing.

• Wrote a co-first-author paper published in the Research Archive of Rising Scholars (2023).

PUBLICATIONS

FAVOR-GPT: A Natural Language Interface to Genomic Annotations
Thomas Cheng Li, Hufeng Zhou, Vineet Verma, Xiangru Tang, Yanjun Shao, Bioinformatics Advances (2024)
Eric Van Buren, Zhiping Weng, Shamil R Sunyaev, Mark Gerstein, Xihong Lin doi.org/10.1093/bioadv/vbae143

Sign Language Recognition from Video using Geometrical
and Transfer Learning Techniques Research Archive of Rising Scholars (2023)
David Chen and Thomas Cheng Li (Co-first authors) doi.org/10.58445/rars.486

EXTRACURRICULARS

Princeton University Laboratory Learning Program (LLP) Summer 2024
Utilizing LLMs to find information on Wastewater Treatment Facilities, with Prof. Jason Ren

• 6% acceptance rate summer internship experience to work under accomplished Princeton professor.

• Built program that is able to automatically gather publically available information for wastewater treatment
plants and other environmentally related facilities.

• Expanded the capabilities of state of the art LLMs for answering environmental engineering questions using
vector databases.

Stony Brook University Simons Summer Research Program (SSRP) Jul. 1 - Aug. 9, 2024
Characterizing Machine Learning Methods for Medical Time Series Diagnosis, with Dr. Alisa Yurovsky

• 5% acceptance rate summer research program to do bioinformatics research at Stony Brook University.

• Trained time series transformer classification models in order to detect Acute Kidney Failure using Electronic
Health Records from the Trinetx database.

• Analyzed and tested different data imputation methods for patient data to increase model performances.

https://tomli.org
https://favor.genohub.org
https://doi.org/10.1093/bioadv/vbae143
https://github.com/hsteven-archive/sign_lang
https://doi.org/10.1093/bioadv/vbae143
https://doi.org/10.58445/rars.486


• Trained Generative Adversarial Networks to generate synthetic EHR data that balances underrepresented
patient groups or conditions, reducing bias and improving the model’s fairness and generalization across
diverse populations.

Physics Club, Weston High School Sep. 2022 - Present
Co-President

• Founded high school Physics Club by gathering 25 interested student signatures, finding a faculty advisor,
and presenting idea to administrators for approval.

• Organized club meetings every other week to practice and discuss challenging physics problems, tutor Fresh-
man students for Honors Physics.

Cybersecurity Club, Weston High School Oct. 2021 - Present

Captain

• Competed in Cyberpatriot’s National Youth Cyber Defense Competition, held by the Air & Space Forces As-
sociation where thousands of students from around the US compete in securing compromised Windows/Linux
systems; Won the Platinum Division 1st Place State Award and the Platinum Division Semifinalist Award.

• Competed in the Cyberstart program where 42,402 students competed to solve challenging security-related
problems; Won the National Semifinalist award.

• Elected team captain and organized weekly meetings for ∼10 student members to practice cybersecurity
competition problems, published 132-page book Digital Literacy 101 on amazon.com/dp/B0DBSWX8ZL.

• Interned part-time for cybersecurity firm BG Networks, providing security solutions against ransomware.

Students for Environmental Action (SEA) group Oct. 2022 - Present

Co-President

• Volunteered 2 hours every week to support local sustainability by planting trees, building forest trails, and
encouraging recycling (bought and set up 5 of the first recycling trash cans in school history).

• Lobbied and testified in front of state congress over climate bills (e.g. Air Quality EJ bill), engaged in local
town sustainability decisions as a student representative on the sustainability committee, and joined the
Massachusetts Youth Climate Coalition (MYCC), aiming to tackle air quality control, voting transparency,
and climate-friendly building renovations. A member of Town of Weston’s Sustainability Committee.

• Elected Vice-President and organized weekly meetings, volunteering opportunities, and other initiatives
amongst the ∼7 consistent members. Built and maintained its website seaweston.org

Visitor Volunteer at NewBridge on the Charles Senior Home Apr. 2024 - Present

AWARDS

United States of America Computing Olympiad (USACO) Gold (testing for Platinum in Dec.) 2024

Certificate of Distinction (placed 133rd in the world out of 3,077 participants) in Sir Isaac Newton
Exam of Physics, organized by the Department of Physics & Astronomy, University of Waterloo 2024

Cyberpatriot’s National Youth Cyber Defense Competition 2023
Platinum Division 1st Place State Award, Platinum Division Semifinalist Award, Gold Division 1st Place Award.

• The nation’s largest cyber defense contest (over 3,000 schools participating with 5 members per school on
average), held by the Air & Space Forces Association.

• Received a letter of congratulation from Massachusetts State Representative Alice Peisch.

3rd Place Award at the Massachusetts Science & Engineering Fair (MSEF) 2024
Analysis and Machine Learning Modeling of Spatial Data to Identify Asthma Hotspots in Massachusetts

Best Research Project (2nd place) Award for $1,500 cash prize (team) 2023
AAASE Princeton University Summer Academy

National Merit Scholarship Semifinalist (received the maximum score of 1520 on the PSAT) 2023

https://www.amazon.com/dp/B0DBSWX8ZL
https://www.westonma.gov/1296/Sustainability-Committee
https://seaweston.org
https://drive.google.com/file/d/1mHFGJ9fniQtK28Xqn_kI5eAQ8gRnoWfg/view?usp=sharing
https://drive.google.com/file/d/14URIy0e_LPgKDskD6gQVhVy2xa43vR8t/view?usp=sharing
https://scifair.com/wp-content/uploads/2024/04/2024-MSEF-High-School-Award-Winners-1.pdf
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Abstract

Motivation: Functional Annotation of genomic Variants Online Resources (FAVOR) offers multi-faceted, whole genome variant functional anno-
tations, which is essential for Whole Genome and Exome Sequencing (WGS/WES) analysis and the functional prioritization of disease-associ-
ated variants. A versatile chatbot designed to facilitate informative interpretation and interactive, user-centric summary of the whole genome 
variant functional annotation data in the FAVOR database is needed.

Results: We have developed FAVOR-GPT, a generative natural language interface powered by integrating large language models (LLMs) and 
FAVOR. It is developed based on the Retrieval Augmented Generation (RAG) approach, and complements the original FAVOR portal, enhancing 
usability for users, especially those without specialized expertise. FAVOR-GPT simplifies raw annotations by providing interpretable explana-
tions and result summaries in response to the user’s prompt. It shows high accuracy when cross-referencing with the FAVOR database, under-
scoring the robustness of the retrieval framework.

Availability and implementation: Researchers can access FAVOR-GPT at FAVOR’s main website (https://favor.genohub.org).

1 Introduction

Multi-faceted variant functional annotation plays a pivotal role 
in the analysis and interpretation of the findings of array-based 
Genome-Wide Association Studies (GWAS) and WGS studies 
(Watanabe et al. 2017, Li et al. 2020, Quick et al. 2020). 
Examples of large scale WGS studies include the Trans-Omics 
Precision Medicine (TOPMed) Program, UK Biobank, and All 
of Us (Sudlow et al. 2015, Karczewski et al. 2020, Taliun et al. 
2021). Variant function annotations can be used for functional 
fine mapping (Kichaev et al. 2014, Schaid et al. 2018), parti-
tioned heritability (Finucane et al. 2015), polygenic risk scores 
(PRSs; Marquez-Luna et al. 2021), and rare variant association 
analysis of WGS studies (Li et al. 2022).

The Functional Annotation of Variants Online Resources 
(FAVOR) database and portal (Zhou et al. 2023) provides an 
open access comprehensive online platform for functional 

annotations of genetic variants, genomic regions and genes 
across the whole genome. FAVOR efficiently summarizes 
and visualizes multi-faceted functional annotation data of all 
possible (approximately nine billion) single nucleotide var-
iants (SNVs), and insertion and deletion variants (Indels) ob-
served in large-scale genome sequencing studies, such as 
TOPMed, covering the entire human genome. It enables 
quick and convenient querying at variant, gene, and region 
levels. FAVOR integrates variant functional information 
from diverse sources to elucidate the functional attributes of 
variants, and assists the prioritization of potential causal var-
iants influencing human phenotypes. However, effectively 
utilizing FAVOR necessitates a certain level of prior special-
ized knowledge and background. Users are required to pos-
sess a fundamental understanding of different annotation 
metrics and the specific genes or variants they wish to query, 
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in addition to adhering to the correct input formats. Second, 
there are various terms and scores that users may need to re-
fer to the FAVOR documentation to understand (Zhou et al. 
2023). Third, the queried results on the FAVOR portal are 
static with raw annotation results, precluding interactive cal-
culation of summary statistics of interest.

There is a significant need to develop a user-friendly tool to 
respond to natural language queries, and provide results in an 
interactive format that are easy to understand without prior 
knowledge. This will help bridge the gap in accessibility and us-
ability of variant functional annotations in genetics and genomic 
research. There are increasing interests in leveraging Large 
Language Models (LLMs; Touvron et al. 2023), such as Chat- 
GPT, GPT-4 (OpenAI 2023) and LLaMA (Touvron et al. 2023) 
in biomedical applications. This transformative technology 
offers attractive artificial intelligence capabilities. For example, 
GPT-4 have shown proficiency and intelligence in human inter-
actions, achieved through instruction tuning and feedback- 
based training. These potentials have ignited significant interest 
and excitement within the scientific research community toward 
LLMs (Sallam 2023). In the open-source world, LLaMA has be-
come increasingly popular (Touvron et al. 2023). LLaMA3.1’s 
performance is on par with GPT-4. This advancement shows 
great potential for researchers seeking to enhance customiza-
tion. Recently, VarChat (Paoli et al. 2024) was introduced to in-
tegrate chatbot-based variant search with the publications from 
PubMed to generate summaries. It is, however, limited to the 
small subset of variants documented in the published literature. 
It lacks the ability to query for multi-faceted functional annota-
tions of any variant (SNV) across the human genome, and fails 
to provide functional information for a large number of variants 
in WGS studies.

In this paper, we introduce FAVOR-GPT, an interactive 
tool that leverages knowledge-guided LLMs to enhance the 
user experience interacting with the FAVOR database. 
Compared to the competitive products, we selected the 
ChatGPT API from OpenAI for following reasons. First, it 
offers high-quality and contextually relevant responses, while 
boasting rapid response times, ensuring users receive prompt 
replies to their queries. Second, ChatGPT provides extensive 
tools available in the JavaScript ecosystem, and its support 
for function calling makes it an ideal candidate for adopting 
the Retrieval-Augmented Generation (RAG) approach. It 
allows to integrate external knowledge sources and our in- 
house FAVOR APIs seamlessly into the language model’s 
generation framework, enhancing the accuracy and relevance 
of the responses. Third, opting for ChatGPT APIs eliminates 
the need to run a local language model, and reduces the 
amount of additional responsibilities and complexities, such 
as hardware requirements, model fine-tuning, and mainte-
nance. ChatGPT offers a more straightforward setup process, 
enabling us to focus on building our applications rather than 
managing the underlying infrastructure.

FAVOR-GPT exhibits the ability to understand user inputs 
in natural language and improve user experience in navigat-
ing the FAVOR database and portal. Its inherent flexibility 
allows it to accommodate a wide range of input formats, en-
suring that queries are properly understood. In addition to re-
trieve query results from the FAVOR database, FAVOR-GPT 
has several attractive features. When presenting raw annota-
tion results and values, it enriches these findings with relevant 
background introduction and leverages the natural language 
explanations generated by LLM (ChatGPT). It also generates 

summary statistics calculated using the FAVOR database in 
response to prompts. This integrative approach significantly 
improves the understanding of functional annotation results, 
making the utilization of FAVOR easier for researchers. 
FAVOR-GPT introduces a practical approach to integrating 
LLMs specifically tailored for variants functional annotation, 
without the substantial resource requirements of pretraining 
or fine-tuning large models.

2 Methods

FAVOR-GPT was developed with flexibility, resource effi-
ciency, and adaptability in mind. It was made to combine the 
documentation information with the annotations from the 
FAVOR database.

FAVOR-GPT is implemented based on the Retrieval 
Augmented Generation (RAG; Guo et al. 2023) approach, an 
AI framework that enhances responses based on an external 
textual knowledge source. In this case, based on the text 
query of the user, FAVOR-GPT allows ChatGPT to retrieve 
textual data in real time from the FAVOR database automati-
cally via the FAVOR API, and thus grounding the LLM on 
the information from the FAVOR database and documenta-
tion and related sources for generating reliable and detailed 
responses, see Fig. 1. For all gene-related information, 
FAVOR-GPT utilizes a vector database based on Weaviate to 
fetch information relevant to the query. Gene information is 
separated into categories, such as pathway, function, identifi-
cation, and embedded separately using the “text-embedding- 
3-small” vectorizer model from OpenAI.

To enhance user comprehension of the annotation results, 
FAVOR-GPT employs an in-depth analysis of relevant docu-
mentation, aligning it with the values obtained from the 
queries. FAVOR-GPT then employs the ChatGPT APIs to 
generate natural language explanations of the annotation 
results from the FAVOR API queries, presenting the informa-
tion in a format that is easy to understand. Further, FAVOR- 
GPT can conduct data analysis in response to various queries, 
such as calculating the number of pathogenic variants in 
BRCA1. FAVOR-GPT also allows for the user to easily 
cross-verify the data given in FAVOR-GPT with the database 
itself. All FAVOR-GPT and FAVOR API documentation can 
be found at https://docs.genohub.org/.

The workflow of FAVOR-GPT is illustrated in Fig. 1. By 
harnessing the natural language generation capabilities of Chat- 
GPT, FAVOR-GPT ensures that users receive not only raw an-
notation data but also contextual and coherent explanations of 
multi-faceted functional annotations of variants, genes and 
genomic regions. The current version of FAVOR-GPT is imple-
mented using the TypeScript programming language (Bierman 
et al. 2014) with the Vercel.AI SDK (Grammel et al. 2023), 
with a deliberate effort to smoothly integrate it into the existing 
FAVOR user interface which build on the React/Next.js frame-
work. FAVOR-GPT’s presence in the user interface is marked 
by a clickable floating button placed on the FAVOR website. 
The source code for the site can be found at https://github.com/ 
zhouhufeng/FAVOR-GPT.

We conducted benchmark testing on FAVOR-GPT by ran-
domly selecting contexts from the vector database and using 
GPT-4 to create 100 questions based on specific categories 
like gene function or location. These questions are then an-
swered by both FAVOR-GPT and GPT-4. The answers are 
assessed based on two metrics: relevance and accuracy. 

2                                                                                                                                                                                                                                             Li et al. 
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Relevance measures how well the model’s response addresses 
the question, with scores of 1 (answer directly pertains to the 
question), 0.5 (answer tangentially pertains to the question), 
and 0 (answer does not address the question at all). Accuracy 
measures how factually correct the answer is, with scores of 1 
(completely correct), 0.5 (has mistaken but is largely correct), 
and 0 (factually incorrect). These scores are determined by a 
GPT-4 model with access to all the necessary context. To 
compare the model result, we had a plain GPT-4 model an-
swer the same questions and be evaluated similarly.

3 Results

FAVOR-GPT can make any query to satisfy the text inputs. 
These queries include gene-level functional annotation 
queries, gene-based variant queries, and variant-specific func-
tional annotation queries. Supplementary Figure S1 shows 
examples of queries and responses. Users can ask free-form 
questions like “What is the function of the gene APOE?” and 
“What is the function of rs942096275?” FAVOR-GPT will 
provide comprehensive easy-to-understand answers.

FAVOR-GPT is equipped to address computational queries 
such as analyzing and summarizing data, for instance, gene- 
level and region-level variant calculations using the FAVOR 
database. Examples of such computational quires include 
“What is the range for TP53 gene?,” “How many variants in 
APOE?,” “How many pathogenic variants in BRCA1?,” “How 

many loss of function variants in APOE?,” “How many var-
iants in APOE with aPC Epigenetics Repressed > 20?.” These 

responses are shown in Supplementary Figure S2  and Table S1. 
These gene-level variant calculations are performed using the 
TOPMed Bravo variant list, which contains observed variants 

in TOPMed-BRAVO and is part of the FAVOR database. This 
is achieved through the FAVOR API, which is designed to han-

dle such specific queries. The FAVOR web interface offers lim-
ited gene and region level summary statistics. In contrast, 
FAVOR-GPT is much more flexible, enabling users to calculate 

a wide range of customized summary statistics based on their 
specific queries.

The evaluation of FAVOR-GPT shows good performance in 

providing variant functional annotation information. FAVOR- 
GPT had a relevance score of 0.865 and an accuracy score of 
0.85, whereas the regular GPT-4 model had a relevance score of 

0.5 and an accuracy score of 0.595 (All the examples are placed 
in Supplementary Table S3). In many cases, the GPT-4 model 
resorted to saying that it did not know the answer to the ques-

tion, such as “How many pathogenic variants does BRCA1 
have?” which raised the accuracy score to be decently high as “I 

don’t know.” Although the scores show that FAVOR-GPT still 
has room for improvement, they also show that the current 
RAG system by integrating the high quality whole genome vari-

ant annotation database FAVOR significantly improves gene- 
related and variant-related queries and calculations.

Figure 1. Graphical representation of the FAVOR-GPT workflow. The FAVOR-GPT workflow demonstrates how it converts natural language into 

structured query syntax and then interprets the query results into clear and fluid natural language.

FAVOR-GPT                                                                                                                                                                                                                                     3 
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4 Discussions

We have developed FAVOR-GPT, an interactive interface that 

leverages Language Model APIs with the multi-faceted variant 

functional annotation database. It furnishes encompassing an-

notation results within the FAVOR ecosystem, ensuring that 

users have access to comprehensive knowledge-guided informa-

tion and explanations. FAVOR-GPT exhibits relevance and ac-

curacy in interpreting users’ natural language inputs, translating 

them into structured database queries, and explaining annota-

tion results in natural language and hyperlinks of the sources. 

Serving as the one of the core interfaces for accessing functional 

annotation within FAVOR, it is also capable of performing var-

ious summary statistics calculations using the data in FAVOR.
The utilization of FAVOR-GPT enables a wider community 

of researchers to more easily conduct genetics and bioinformat-

ics research. Our efforts to harness the power of Language 

Model APIs to enhance bioinformatics database usage will be 

helpful for similar developments in the field. The advent of 

DNN-driven LLMs represents a valuable force for a new type 

of interface that improves database user experience. FAVOR- 

GPT sets an example for navigating large and complex data-

bases of a similar nature. By providing a model for developing 

and implementing intuitive, natural language-driven interfaces, 

FAVOR-GPT showcases an effective implementation approach 

for other specialized knowledge bases to broaden their reach 

and enhance user experience.

Supplementary data

Supplementary data are available at Bioinformatics 

Advances online.
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Abstract

Recycling is crucial for sustainability, yet current methods are error-prone. This
research introduces AutoRecycle, an intelligent recycling machine designed to
automate waste sorting using advanced machine learning techniques. By leveraging
the RealWaste dataset and a Vision Transformer (ViT) model trained with the
Self-Supervised DINO method, our system aims to enhance sorting accuracy and
reduce contamination in recycling streams. We created a proof of concept physical
machine that includes a high-resolution camera, a servo motor, and a ultrasonic
sensor integrated with a Raspberry Pi for real-time image processing. Experimental
results demonstrate that our ViT model achieves 95.16% accuracy in detailed
waste classification and 98.74% accuracy in binary recyclability classification.
AutoRecycle proves to be a scalable prototype that can significantly improve
effective recycling rates. Video demonstration and source code can be viewed at
our project website: https://robbiebusinessacc.github.io/.

1 Introduction

A recent survey indicates that 94% of Americans support recycling, and only 35% regularly recycle,
primarily due to a lack of convenient access and confusion over recyclable materials [1]. Current
manual sorting methods are labor-intensive, prone to errors, and result in high costs and nearly 25%
contamination in recycling streams[22]. This project aims to address these issues by developing
an AI-driven automated recycling bin, AutoRecycle, which uses a Vision Transformer (ViT) model
trained on the RealWaste dataset to accurately identify and sort various waste types [20] [2]. By
integrating newer machine learning techniques with hardware components, this system seeks to
improve sorting efficiency and provide a scalable solution for modern recycling needs.

2 Literature Review

Current automated recycling mainly uses convolutional neural networks (CNNs) and support vector
machines (SVM) to separate waste with accuracies of 83% and 94.8% respectively and only separated
into plastic, paper, and metal [11] [16]. Further, recycling is highly sensitive to contamination, and
small amounts of wrongly recycled trash can damage the recyclability of a whole container, meaning
accuracies of below 95% are not good enough for practical use [5]. Advancements in machine
learning, particularly Vision Transformers (ViTs), offer a promising solution to these limitations by
achieving high accuracy in image-based waste classification tasks [4]. The RealWaste dataset, with
its diverse real-world waste images, is a great resource for training effective models. Unlike pristine
datasets, this dataset has data from real world landfills and has enabled models like Inception V3 to
reach 89.19% accuracy [18][20] [21].

∗Both authors contributed equally to this work.
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2.1 Vision Transformers

This paper distinguishes itself by integrating a Vision Transformer (ViT) model, trained with the
Self-Supervised DINO method, into an automated recycling bin system using the RealWaste dataset
[2]. Unlike traditional CNNs, which rely heavily on local feature extraction, ViTs leverage global
attention mechanisms to capture long-range dependencies and contextual information more effectively.
Recent literature has consistently shown the superiority of transformer-based architectures across
various domains, the primary example being natural language processing models like GPT [13][14].
Transformers have also demonstrated state-of-the-art results in visual recognition tasks, where CNNs
have traditionally dominated [2] [9]. Additionally, vision transformers have provided a robust
framework for learning joint text-and-image embeddings such as CLIP [12], and they have helped
account for how the human visual system develops from early sensory experience [10]. Because of
this previous literature in this field, we were motivated to employ a ViT model, which has yielded
higher accuracy compared to previous studies, including those utilizing Inception V3 [4] [23] [20].

3 Methodology

On top of creating the machine learning model, we also designed and implemented the hardware
necessary to physically separate waste into recyclable and non-recyclable categories.

Figure 1: Diagram demonstrating the logic design of the prototype trash can

3.1 Software Design

3.1.1 Data Collection and Preparation

The RealWaste dataset comprises thousands of images categorized into cardboard, food organics,
glass, metal, miscellaneous trash, paper, plastic, textile trash, and vegetation classes.

Table 1: Data Preparation Steps

Step Description

Data Loading The RealWaste dataset was loaded using the fastai library [6].

Preprocessing Cleaning: Implicitly handled within the dataset loading and transforma-
tion pipeline.
Resizing: Images resized to 224x224 pixels as part of the data augmen-
tation process.
Normalization: Using ImageNet statistics to match the pre-trained
model’s input distribution [3].
Augmentation: Data augmentation techniques from fastai applied to
create variations of training images [6].

Data Splitting 80% of the data used for training, and 20% reserved for validation.
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3.1.2 Model Training

We employed a Vision Transformer (ViT) architecture for image classification tasks; specifically the
ViT model trained with the Self-Supervised DINO method [2]. Although the pretrained checkpoint
was self-supervised, we used supervised learning to further train it for our specific task.

Table 2: Training Process Details

Step Description

Model Initialization ViT model (vit_base_patch16_224.dino) initialized with pre-trained
weights on the ImageNet dataset [2] [4].

Custom Head Defined to attach to the ViT model, tailored to the number of waste
categories.

Learning Rate Finder Suggested optimal learning rates for efficient training.

Training Initial Phase: 40 epochs with a learning rate slice between 1 × 10
−3

and 1× 10
−1.

Additional Phase: 20 epochs with a lower learning rate range of 1 ×
10

−4 to 1× 10
−3.

Evaluation Performance metrics include validation accuracy, precision, recall, F1
score, confusion matrix, and top losses analysis.

3.2 Hardware Design

Figure 2: Labeled images of the prototype trash can (Front image on the left - Back on the right)

3.2.1 Key Components

Table 3: Key components of the AutoRecycle system

Component Specifications Function

Camera Module High resolution, wide field of view Captures waste images
Servo Motor High torque, quick response Directs items into categories
Ultrasonic Sensor Accurate range and angle Detects objects, triggers sorting
Arduino Board Model, clock speed, I/O pins Controls servo
Raspberry Pi High processing power, ample memory Runs algorithms, communicates with Arduino

3.2.2 Control Logic and Software Integration

• Arduino Control Logic: Programmed to receive signals from the sensor and control the
servo motor. The code is written in C++ and utilizes the Arduino IDE for deployment.
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• Raspberry Pi Software Setup: Scripts are written to get live proximity information from
the sensor, capture images, process them, and send control signals to the Arduino based on
the machine-learning output.

4 Results

Figure 3: Confusion matrix of the AutoRecycle system

4.1 Model Performance

The machine learning model’s performance was evaluated using a confusion matrix, top losses, and
validation accuracy. Specifically, the performance analysis was divided into two key categories:
detailed waste classification and binary recyclability classification. The detailed waste classification
involved identifying the exact category of the waste item, such as metal, paper, cardboard, etc.
The ViT model demonstrated high accuracy in this task, achieving a validation accuracy rate of
95.16%. This indicates that the model is proficient in distinguishing between different types of
recyclable materials, making it highly effective for precise sorting operations. For a more streamlined
sorting process, the model was also evaluated on its ability to classify waste items into recyclable
and non-recyclable categories. This is to mimic the real-life separation of single-stream recycling
[7]. In this context, recyclable materials included metal, plastic, glass, paper, and cardboard, while
non-recyclable materials comprised all other waste types. In this binary classification task, the model
achieved an impressive validation accuracy of 98.74%.

5 Discussion and Conclusion

Our prototype bin serves as a proof of concept for an automated single-stream recycling system.
Compared to previous studies, which achieved lower classification accuracy rates of 94.8% and below,
our ViT model’s 95.16% validation accuracy in more detailed classification and 98.74% in binary
classification represent a significant advancement [19] [16].Further, our physical prototype is a novel
demonstration of how such a machine-learning model could be applied. However, limitations such as
identifying a combination of different waste types remain. Future research can build on this work by
expanding the dataset, adding more sensors and cameras, and scaling the system for use.

With further development, the AutoRecycle design could significantly increase recycling rates by
up to 30% due to removing the fear of miss recycling from the population [8] [1]. Additionally,
the decrease in recycling errors could increase the resources recycled by 20% due to decreasing
contamination [22]. Overall, this intelligent recycling machine represents a promising advancement in
waste management, potentially improving recycling efficiency. Recycling has huge positive impacts
on climate change, water quality, and pollution. Recycling by itself could reduce carbon dioxide
emissions by 6 gigatons by 2050, while reducing water pollution and air pollution from paper by 35%
and 74% respectively [15] [17].
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Abstract9

We aim to develop an American Sign Language (ASL) recognition system to bridge the communica-10

tion barrier for the deaf and hard-of-hearing communities. Some previous projects utilized specialized11

hardware, while this study focuses on purely 2-D video stream recognition due to its accessibility. In12

this paper, we use the őne-tuning method, which involves őne-tuning a neural network model trained on13

public datasets for speciőc individuals in a data-efficient manner. Challenges such as image background14

interference and occlusion are discussed. The algorithms are tested on teenager, adult and senior male15

and female hands and the accuracies are comparatively better than other previous models, with the16

results average testing accuracy being 96.696%.17

1 INTRODUCTION18

The deaf and hard-of-hearing population has faced communication barriers throughout history, leading to19

signiőcant challenges in their day-to-day lives. American Sign Language (ASL), a visual language used by20

millions of people worldwide, has become an essential means of communication for this population. However,21

the majority of the general population remains unable to understand ASL, exacerbating the communication22

divide. In recent years, machine learning and artiőcial intelligence have demonstrated immense potential in23

addressing such challenges by creating systems capable of understanding and interpreting sign language.24

The primary aim of this research project is to develop and test new ASL recognition systems, capable of25

identifying and interpreting sign language gestures in real time. By developing a reliable ASL recognition26

system, this project aims to break down communication barriers for the deaf and hard-of-hearing commu-27

nities, while promoting accessibility and social integration. In the long term, the successful deployment of28

sign language recognition systems in various applications such as education, healthcare, and public services,29

will contribute to creating a more inclusive and supportive society for all. While some projects have used30

a variety of hardware systems that normal people would not use, like special gloves, multiple cameras, etc.31

We wanted to test recognition systems with a single purely 2-D video stream, with a variety of background32

interference, lighting and hand conditions.33

After reviewing the őeld, we have decided to employ two methods. The őrst is the 3-D Hand Geome-34

try(HG) method, which uses an open source library Mediapipe to identify the 3-dimensional joint positions35

(landmarks) of the hand. We then created a non machine learning python code which computes the ge-36

ometric relations between the landmarks, and sorts the video stream into different gestures. The second37

method is the Transfer Learning(TL) method, which utilizes a pre-trained neural network based on stock38

photo data. The model is then őne tuned based on live captured video footage of a new individual user’s39
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hand, by optimizing a small portion of the neural network weights while őxing the rest. The aim of this40

project is to compare the two methods for the purpose of detecting sign language that is effective at working41

with all types of hands and environments.42

Figure 1: Visualization of Mediapipe hand landmark locations based on hand joints. Labels 1-4 are along
the thumb, 5-8 are along the pointer őnger, 9-12 are along the middle őnger, 13-16 are along the ring őnger,
and 17-20 are along the pinky őnger. In total there are 20 landmarks to represent the 3-D geometric state
of the hand in any image.

2 Hand Geometry43

In this section, we describe the Hand Geometry(HG) method, which recognizes ASL signs through the 3-44

D geometric relations between different joints or landmarks in the hand. This method is similar to past45

research on ASL methods, which used glove-like devices to render the hand in three dimensions and identify46

the gestures from there.[1] In contrast to these methods, our 3-D Hand Geometry method only requires 2-D47
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pictures and videos, which makes it more applicable to general users.48

2.1 Landmark Identification49

The objective of the Hand Geometry method is to utilize the Mediapipe hand landmarker library [2] which50

numerizes each őnger joint into position values x, y, z. Each frame in a computer vision image can be51

represented by its three RGB values such that F = {{FRi
, i = 0, ..., n ·m}, {FGi

, i = 0, ..., n ·m}}, {FBi
, i =52

0, ..., n ·m}} where n and m are the dimensions of the image. The set of of hand landmarks is represented53

as L = {Li = (xi, yi, zi), i = 0, .., 20} where each (xi, yi, zi) tuple is deőned by the Mediapipe model M such54

that55

(xi, yi, zi) = M(F, i) (1)

where each of the xyz tuples represent the 3 dimensional location of the landmarks.56

2.2 Landmark Geometry57

Given the three dimensional position of all the landmarks in the hand, we then used a Python program which58

tests all the geometric relations between each landmark in order to determine the sign output. For example,59

the orientation of the three landmarks L0, L5, L17 give the direction of the palm depending on whether L0 is60

the highest landmark of the three in terms of the y coordinate. Furthermore, the relation of different joints61

could be used to determine whether two őngers were in contact with each other or if they were inside the62

palm area.63

def palm(self,pt):64

# form a triangle from the key points indexed by 0, 5, 1765

self.triangle = np.array([self.xyz[0], self.xyz[5], self.xyz[17]])66

assert len(self.triangle) == 367

vecs = self.triangle - pt68

cosines = np.zeros((3))69

cosines[0] = np.sum(vecs[0] * vecs[1]) / (np.linalg.norm(vecs[0]) * np.linalg.norm(vecs[1]))70

cosines[1] = np.sum(vecs[0] * vecs[2]) / (np.linalg.norm(vecs[0]) * np.linalg.norm(vecs[2]))71

cosines[2] = np.sum(vecs[1] * vecs[2]) / (np.linalg.norm(vecs[1]) * np.linalg.norm(vecs[2]))72

count = np.sum(cosines < 0)73

if count >= 2:74

return True75

else:76

return False77

78

...79

80

def letter_M(self):81

if self.touching(self.middle_tip,self.thumb_ip,self.accuracy):82

if self.touching(self.index_tip,self.thumb_ip,self.accuracy):83

if self.palm(self.pinky_tip):84

return True85

return False86

87

...88

89

def letter_C(self):90

if not self.palm(self.pinky_tip) and not self.palm(self.index_tip)91

and not self.palm(self.ring_tip) and not self.palm(self.middle_tip) and92

not self.touching(self.thumb_tip, self.middle_tip, self.accuracy):93

if self.touching(self.pinky_tip, self.ring_tip, self.accuracy) and94

self.touching(self.index_tip,self.middle_tip,self.accuracy):95

if not self.palm(self.thumb_tip):96
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if self.palm_direction(self.wrist, self.index_mcp, self.pinky_mcp)[1] == "up":97

return True98

return False99

...100

The above shows the Python code snippets of the 3-D HG method. A lot of "if else" statements are required101

to be programmed and it is quite time consuming to debug the code, but we are able to őnish it in reasonable102

shape.103

2.3 Implementation errors104

One of the challenges in using Mediapipe’s hand landmarks for identifying sign language is the varying105

geometric tolerances for different hands. Each person has different hand sizes, shapes and colors, leading to106

variations in the decision statements about landmark relationships. As a result, the accuracy of identifying107

gestures can differ between individuals. This discrepancy poses a challenge when creating a program that108

aims to accurately recognize sign language across a diverse range of users. Adjusting the accuracy thresholds109

to accommodate various hand variations becomes crucial but also adds complexity to the implementation.110

Another source of inaccuracy when using Mediapipe’s hand 3-D landmarks for sign language identiőcation111

is the image background interference that can affect landmark detection. The hand tracking algorithm relies112

on distinguishing the hand from the background, and any elements in the environment that resemble or113

overlap with the hand can interfere with accurate landmark labeling. For instance, if the background for the114

picture or video is a similar color to the user’s hands, it will cause identiőcation errors where the background115

becomes identiőed as a hand. These background factors can introduce errors in recognizing sign language116

gestures, compromising the overall accuracy of the system.117

In sign language, different joints and regions of the hand are utilized to form speciőc signs or gestures.118

However, when performing certain signs, it is possible that some hand joints or landmarks get occluded119

or blocked from the camera’s view. This occlusion can occur when the hand crosses over itself, when120

őngers overlap, or when certain hand conőgurations obscure speciőc landmarks. As a result, the missing121

or obscured landmarks can lead to inaccuracies in identifying the intended sign language gesture. Dealing122

with occlusion scenarios becomes a signiőcant challenge in leveraging Mediapipe’s hand landmarks for sign123

language recognition, as it requires additional techniques or algorithms to handle partial or incomplete124

landmark information.125

(a) Error Example 1 (b) Error Example 2

Figure 2: Error Example 1 shows landmark errors when joints are close together. Error Example 2 shows
landmark errors with background objects identiőed as joints.
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3 Transfer Learning Method126

In this section, we describe the second methodology of recognizing ASL signs from 2-D RGB video streams.127

We start with brieőng the problem deőnition of ASL alphabet recognition in Section 3.1. Next we introduce128

the őne tuning technique applied in Section 3.3, which is a common technique in neural network based129

deep learning. In Section 3.4, we present our software design on mobile device that assists few shots data130

collections on a new domain (i.e. the hand of a new user) for the purpose of model őne tuning. Related131

implementation details are provided in Section 3.5.

Figure 3: The proposed ASL recognition system featuring neural network model őne tuning on mobile device.
Red arrow ŕow: offline ASL model training pipeline using public datasets. Green arrow ŕow: ASL model
őne tuning using individualized collected datasets. Blue arrow ŕow: őne tuned ASL model online inference
on mobile end. Our ASL recognition model takes more than 85,000 video frames and predicts ASL letters
given mobile captured video stream in 30 fps.

132

3.1 Problem Definition133

The objective is to determine a single ASL letter out of 26 alphabets and 3 special characters [3] from134

streamed video frames. Because some of the signatures in the alphabet such as "Z" and "J" are motion135

based, the frames in computer vision’s terminology are represented as a sequence X of RGB images in136

terms of X = {xRGB,t}
T
t=1, where the length of video frames is denoted by T . The set of ASL alphabets137

is represented as Y = {yi, i = 1, .., 29}. Our ASL recognition problem hence can be deőned as learning a138

model M such that139

yt = M(xRGB,t) (2)

where yt ∈ Y given the timestamp t is the recognized ASL letter. Because the prediction of the highest140

likelihood letter is the optimal one from 29 ASL characters, this problem is considered a classiőcation141

problem, and therefore M would be a classiőcation model with neural network weights to be optimized.142

For all timestamps t = 1, ..., T, M(x) would represent the model ouput and y(x) would be the vector143

representation of the label, with the vector value being 1 at the index where the classiőcation is correct and144

0 everywhere else. Therefore if M(x) has the highest value at the same index where y(x) is equal to 1, and145

furthermore if this highest value is very positive, the model would be more accurate for that one instance.146

3.2 Model Learning147

Given the classiőcation problem stated in Eq. 2, we apply a similar modeling approach with traditional148

image classiőcation deep neural networks [4] in order to address object classiőcation on image domain. The149

model we trained can be decomposed into the following:150

M = {MBB ,MFC} (3)

where MBB represents the backbone network layers (BB) that encode the RGB images to multi dimensional151

features. MFC is a fully connected layer (FC) placed at the end of M. It maps the encoded features to the152
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layer of classiőcation output. The objective is to minimize the so-called cross-entropy loss[5] between the153

classiőcation predictions and target:154

L(x, y) =

∑N

n=1 ln

N
(4)

where155

ln = −

C∑

c=1

ωc log
exp(M(x)n,c)∑C

i=1 exp(M(x)n,i)
y(x)n,c (5)

where
exp(M(x)n,c)∑
C

i=1
exp(M(x)n,i)

is the probability predicted by the model of the label being in class c, and y(x)n,c156

is either 0 or 1 depending on whether the label is of class c. ωc is the individual weight for each class, which157

is used because of the different number of appearances for each class in the training dataset. Because ωc is158

there to counteract the training set inequality, it is a őxed value and does not change during model learning.159

As the model at the moment is a classiőcation model for classifying between 29 classes, C is 29.[5]160

In this work we used different optimizers, including RMSProp(RMSP), Adam, and AdamW, to obtain161

the optimal neural network parameters for M(x) that minimizes cross entropy loss.162

3.3 Model Fine Tuning163

Following the learning objective deőned in Eq. 4, model M can be trained by iterating through the dataset164

points {x, y(x)}D. Evaluation of the model can be performed on the subset Dsub ∈ {x, y(x)}D which is165

unseen during the training. In real-world applications, ASL video frames are collected in-the-wild with166

diverse backgrounds and hand size, shape and color proőles. Those frames may fail at classiőcation for167

initial M because the image data, in appearance, can be quite different from the dataset applied to model168

training. And as we can see in Sec. 2, these background factors can wildly affect the output results in a169

negative way.170

To attain a more applicable model, we apply the őne tuning technique [6]. The core strategy of őne171

tuning a neural network is to continue the training referring to Eq. 4 on a őxed set of layers in model M172

while keeping the rest of layers weights unchanged. Speciőcally, the model weights of M are categorized as:173

{ω, ω ∈ M} = {ωfx, ωfx ∈ MBB} ∪ {ωft, ωft ∈ MFC} (6)

where ωfx are backbone layers in which the weights are őxed for feature extraction while ωft are weights of174

the őnal fully connected layer updated for őne tuning. The weights update of őne tuning layers Mfc follows175

the learning objective deőned in Eq. 4 and 5 as to solve the same classiőcation problem.176

3.4 Mobile Application177

The approach described in Sec. 3.3 is suitable for use cases where the new image frames are unseen to the178

base model but are adapted through őne tuning to achieve the same learning objective. To assist with getting179

a more user-friendly interface of our proposed method, we take advantage of an Apple iPhone IOS based180

app Translitero and port the pre-trained model weight {ωfx, ωft} based on public hand-gesture dataset to181

the mobile end in Fig. 3, to provide the portability. The user interface allows the data collection process of182

the new use cases to be natural and fast.183

In Fig. 3 we sketch the core components that supports the őne tuning in a data-efficient manner:184

• Data Collection. The user interface opens up the camera to collect live video stream of the new185

user’s hand gesture for up to ten seconds. The user is prompted to make hand gestures of the 29 ASL186

letters, and the recorded video clips are automatically labeled.187

• Fine Tune Backend. The collected data in video clips(MP4) are uploaded to a desktop computer188

server where a pipeline takes the RGB video frames and then follows the procedure detailed in Sec. 3.3189

to optimize and obtain the őne tuned neural network weights. The őne-tuned neural network weights190

ωnew
ft are then sent back to the mobile phone.191
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• Live Inference. The real-time video stream captured from mobile camera is projected to the handheld192

screen. In the meantime, the ASL model {ωfx, ω
new
ft } takes the raw frames and predicts the most likely193

ASL letter based on model inferences directly on the smartphone.194

The session time of data collection is set as one minute maximum per ASL letter. The collected video195

clip from iPhone device has the frame rate of 30Hz. As demonstrated in section 4, 10 seconds recording196

(∼300 frames) per ASL letter applied to model őne tune could attain an acceptable recognition accuracy,197

thus requiring less than 5 minutes recording time in total. It justiőes our proposed approach in realizing198

in-the-wild ASL recognition as well as the mobile user interface that provides a user-friendly and rapid data199

collection method.200

3.5 Implementation Details201

The őne-tuning method of ASL letter classiőcation, proposed in Sec. 3.2, is implemented under PyTorch202

deep learning code framework [7]. The architectural details are below:203

• Back Bone. Following the deőnition of MBB in Equ. 3, we adopt MobileNetV2 [8] as the back bone204

architecture with pretrained weights that takes RGB image frames in size of 224 x 224.205

• Classfication. Following the deőnition of MFC in Equ. 3, the classiőcation layer is a fully connected206

(FC) one with dimension of 29 corresponds to the size of ASL letters introduced in this work.207

For model training on M, we apply Adam optimizer [9] with the learning rate of 0.0005, and other optimizers.208

A learning rate scheduler is also utilized during the training. The same optimization process is also adapted209

for the model őne tuning.210

Translitero integrates multiple view controllers as the user interfaces developed in XCode 14.0 and IOS211

14.5 to satisfy data collection or online ASL inference. Portability of the ASL model is supported by LibTorch212

10.0 framework installed on an iPhone.213

Methods AA (%) TM 5s (%) TM 10s (%) TM 20s (%)

HG 78.60 85.50 85.44 85.43
MASL 97.76 20.03 20.00 19.99
MASL+FT (Pro-
posed)

N/A 90.76 95.45 95.89

Table 1: ASL letter recognition accuracy in percentages. AA: results on ASL Alphabet dataset. TM: results
on Translitero Mobile dataset. 5/10/15 seconds correspond to frame time length used for model őne tuning.
The model őne tuning approach we proposed demonstrates the better accuracy.

Optimizers RMSP [10] (10s) (%) Adam [9] (10s) (%) AdamW [11] (10s) (%)
Accuracy 95.33 95.45 95.48

Blurred Background MASL + FT (5s) MASL + FT (10s) MASL + FT (20s)
Accuracy 89.99 95.20 95.56

Table 2: Ablation study of őne tuning based ASL letter recognition accuracy in percentage. Row 1-2:
results of adapting different optimizers on model őne tuning under the same data collection time (10s); Row
3-4: results of applying image frames with blurred background but different data collection time during
model őne tuning.
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Figure 4: Visualization of ASL letter recognition qualitative examples. Column 1: ASL gesture frame
samples captured from mobile camera using the app. Column 2: ASL letter recognition accuracy (bottom-
right red fonts) tested on pre-recorded ASL clips. Column 3: veriőcation on recognition accuracy while
applying virtual background to the clips. Row 1 and Row 2 correspond to ASL letters N and Z.

4 Experiments214

We have carried out ASL recognition experiments on teenager, adult and senior male and female hands in215

the wild and the accuracies obtained are compared.216

4.1 Datasets217

• ASL Alphabet. The training data contains 87, 000 images in 29 ASL letter categories, are 26 letters218

A-Z and 3 classes for SPACE, DELETE and NOTHING, which are necessary for spelling words and219

sentences.220

• Translitero Mobile. Short-duration ASL alphabets video frames are captured using an iPhone.221

Those video clips are 1 minute in length containing 29 ASL letter categories to validate the model’s222

ability of generalization.223

The ASL Alphabet dataset is further divided into training and testing splits for model learning and evaluation224

purposes. Video segments from the Translitero mobilephone-collected dataset are sampled in őxed length for225

model őne tuning and transfer learning. The rest of the video segments are used for evaluation. Variation226

of the sample video frame length used for őne tuning is discussed in Sec. 4.3227
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4.2 Methods228

Among the various methods tested, the most effective methods for ASL letter recognition are:229

• Hand Geometry(HG). This method extracts 3-D hand key points (landmarks) based on video image230

frames utilizing the Mediapipe [12] library. The geometry-based classiőer on 29 ASL letters are derived231

based on hand key points geometric relations.232

• MobileNet ASL(MASL). The vanilla ASL classiőcation model developed according to Sec. 3.2, 3.5233

using public datasets with no customization. The model is trained end-to-end from image frames to234

29 ASL classes upon ASL Alphabet dataset.235

• Fine Tuned MASL(MASL+FT). The ASL classiőcation model which uses the őne tuning technique236

(Sec. 3.3) using new individualized data from Translitero Mobile clip frames.237

4.3 Results238

4.3.1 Quantitative Results239

We summarize the quantitative results in Table 2 of the recognition accuracies evaluated on ASL Alphabet240

and Translitero datasets. The percentages are averaged over the 26 ASL letters A-Z. HG accuracies are all241

below 90% which indicates that the 3-D geometric cues extracted from hand key points are not precise enough242

to attain exceptional recognition accuracy. Results of MobileNet ASL(MASL) trained on ASL Alphabet243

dataset demonstrates the great performance if tested as well on the ASL Alphabet public dataset. However,244

the low recognition accuracies on Translitero Mobile dataset collected on new individuals indicates the model245

does not have the ability of generalization. During test time, a few of the ASL letters recognition accuracies246

are observed to be nearly zero. On the other hand, after employing the model őne tuning technique to247

MobileNet ASL model(MASL+FT), the issue of generalization gets largely mitigated. The 10s video frame248

length per ASL letter applied for őne tuning could achieve the test accuracy above 95%. Those quantitative249

results validate our transfer learning approach on improving performance of neural network models with250

high data efficiency.251

4.3.2 Qualitative Results252

In Fig 4, we selected two ASL letter recognition cases, "N " (row 1) and "Z" (row 2). The selected two253

cases are challenging according to our observations. Letter N is similar to M in appearance, with the only254

difference being in the position of the thumb tip relative to the őst. Z is a dynamic letter, which means that255

it involves the hand moving during the duration of the gesture. Since our modeling approach predicts per256

frame, there is a chance that the dynamic letters could suffer from lack of data. Despite that, most of our257

testing results showed 100% accuracies, which proves the quality when executing the őne tuned model.258

4.3.3 Ablation Study259

In machine learning, an ablation study is when we study the effects of parts of the model by removing260

or silencing certain layers. We conducted this type of study upon our őne tuned model to explore more261

alternatives that could obtain the optimal performance in terms of ASL letter recognition accuracy. In this262

work, we investigate the following variants:263

• Optimization Algorithm. During the model őne tuning phase, the weights of őne tune layers,264

ωft, are updated according to the gradient descent algorithm. Choices of optimization could result in265

different efficiency and accuracy.266

• Virtual Background. Considering the high background diversity of the video image frames captured267

on the mobile device, we additionally develop a functionality that enables attaching a customized268

background to the video stream. Inside the camera view, the background is blurred resulting in only269
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the moving hands being visible. We apply this setup on both the őne-tuning data collection stage and270

real-time ASL inference stage.271

In Table 2, among the listed optimization algorithms, the Adam optimizers [9, 11] attains better accuracy272

than RMSP [10]. And AdamW [11] could achieve the best accuracy given 10 seconds of őne-tuning data273

collection. Further, we observe that the ASL recognition accuracy is not having much performance change274

with various physical backgrounds (curtains, lighting, wallpaper) after applying the virtual background. For275

all the őne tuning collection time tested on 5, 10, 20 seconds, the accuracy results are close to the uniform276

background ones. Those are also demonstrated in the qualitative results in Fig. 4. These results prove277

the effectiveness of developing the virtual background feature in our mobile APP such that the impact of278

physical backgrounds to the ASL model could be mitigated to greatly enhance the usability.279

Letter/ Demo-
graphic

Teenage Male Teenage Fe-
male

Adult Male Adult Female Senior Male

C 100% 73.2% 100% 100% 100%
E 100% 100% 100% 100% 100%
H 89% 100% 100% 100% 100%
O 100% 89.4% 100% 100% 100%
R 94.2% 91.1% 100% 100% 63%
SPACE 100% 100% 100% 100% 100%

Table 3: The above shows the hand gesture data collected from the mobile app. ASL őnger spelling recog-
nition was analyzed to assess the accuracy across categories of a teenage male, a teenage female, an adult
male, an adult female, and a senior male. The accuracy is determined by the correct number of hand gesture
predictions divided by the total frames, with the number of frame ranging from 80 to 123 depending on the
device. The recognition system achieved high accuracy for teenage males and females as well as adult males
and females. However, the accuracy is still less satisfactory for a senior male, likely due to factors such as
hand tremors and variations in hand shape or size.

5 CONCLUSIONS280

In conclusion, our research translates ASL to English with greater than 95% accuracy using only 2D video281

image-based inputs. The transfer learning method proved to be highly data-efficient during the training282

stage and was a lot more effective during testing due to its adaptiveness to different hands and environments.283

Furthermore, the mobile app with the transfer learning algorithm can be used in practical circumstances284

with different physical backgrounds that occur in real life. This could mean that ASL learning for the sign285

language community could be much easier in the future.286

The ASL algorithms and app may be further expanded into more areas. The app can be made to287

accommodate more than just the ASL alphabet, such as complete words. In addition, the sign language288

transfer learning method can be applied to more sign language systems such as the Spanish / French /289

Russian Sign Languages.290
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Aggregate environmental and pediatric data
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Question: Can machine learning models be used to 
predictively generate the areas of Massachusetts that 
are most prone to asthma?

Hypothesis: A Random Forest machine learning model 
can classify geographical locations as asthma hot spots 
with high accuracy based on environmental data.
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Machine learning models have been extensively used to predict asthma 
exacerbations with various degrees of success. These models incorporate 
a range of predictors including demographic, clinical, and socioeconomic 
factors. The most commonly used machine learning algorithms are 
logistic regression and random forests, but other techniques like XGBoost 
and LightGBM are also in use. The number of predictors in these models 
can range widely from 1 to over 200, and they often include systemic 
steroids use, beta2-agonists, emergency department visits, age, and 
previous asthma exacerbation history. The performance of these models 
is quite variable, with the area under the receiver operating characteristic 
curve (AUROC) ranging from 0.59 to 0.90, indicating that while some 
models are excellent, others may have limited predictive power.

When focusing specifically on predictive models for asthma attacks, the 
use of biosignals and environmental factors is common. The majority of 
studies concentrate on biosignal risk factors, but a substantial number 
also factor in environmental triggers. The data acquisition methods for 
these models vary, including telemonitoring technologies, emergency 
department records, national databases, and environmental data from 
meteorological agencies and pollution monitoring stations. However, it's 
worth noting that having a large and varied population size is crucial for 
the reliability of the study's findings. The generalizability of these models 
is a challenge that requires further research across different groups and 
populations.

Asthma's uneven distribution across Massachusetts demonstrates a 

pressing public health issue, with specific areas experiencing 

disproportionately high rates of the condition. This disparity is often 

attributed to a complex interplay of environmental and socio-economic 

factors, underscoring the need for a detailed spatial analysis to identify 

asthma hotspots. This research is crucial for understanding the 

geographical nuances of asthma incidence, facilitating targeted 

interventions, and addressing environmental injustices that contribute to 

health disparities. Further, the rapidly evolving environment will mean 

that the current Asthma medical data will become quickly outdated. 

2.5-micrometer Particulate Matter concentration exceedances per year. Demonstrates the 

unpredictable nature of environmental factors.
Massachusetts 2022 Air Quality Report(https://www.mass.gov/doc/2022-annual-air-quality-report/download)

1) Aggregate data
I collected environmental data such as particulate matter concentration from 
MassDEP and pediatric asthma data from Massachusetts Environmental Public 
Health Tracking.

Location of air monitoring stations as set up by the Massachusetts Department of 

Environmental Protection.
Source: Massachusetts 2021 Air Quality Report(https://www.mass.gov/doc/2021-annual-air-quality-report/download)

2) Interpolate spatial data
Data collected using monitoring stations is only for a specific location. 
Therefore, we have to interpolate the monitored air quality onto the 
surrounding area. 
We use the Kriging interpolation method in this instance, we use the 
Kriging interpolation method because of its ability to incorporate the 
spatial autocorrelation of the sampled data effectively. This method is 
particularly suitable for air quality data, which often exhibits strong 
spatial correlation. Kriging interpolation is a method that predicts 
values for unsampled points by utilizing the spatial correlation of the 
sampled data, as quantified by semivariance. 

The variogram above is calculated from spatial data, showing how 
data similarity decreases with distance. Each point represents the 
semivariance between pairs of data points at a specific lag distance, 
revealing the spatial structure and continuity within the dataset. The 
pattern depicted by the points is used to model the variogram, which 
is fundamental for the Kriging interpolation process. This model helps 
in understanding the spatial correlation and is crucial for predicting 
values at unsampled locations with greater accuracy.

Data Collection ESDA

Fit Variogram 

Model

Compute 

Experimental 

Variogram

Kriging 

System 

Setup

Solve Kriging 

Equations

Create 

Predicted Map Caption:

Resulting interpolation maps for Asthma prevalence and PM 2.5 levels displayed in ArcGIS 

Pro and made by student.

3) Build training set
Randomly select spatial data points concentrated so that the 
areas with higher prevalence rates are equally represented 

Points from a random sampling of high asthma concentration areas and low 

asthma concentration areas.

Made in ArcGIS Pro by student.

4) Train ML model
Train models using a variety of different hyperparameters and 
observe the resulting testing accuracies.

5) Tune hyperparameters
Experimented with hyperparameters min sample split, min sample leaf, n estimators, and max depth. Min Sample Split and Min Sample Leaf prevent overfitting by controlling node splitting and 
leaf size, ensuring trees don't learn the training data too precisely. N Estimators determines the forest's size, affecting accuracy and computation time. Max Depth limits tree complexity, helping 
avoid overfitting by restricting the number of decision layers. These hyperparameters collectively fine-tune the model's generalization and performance.

Final training versus testing accuracies with the hyperparameters as the independent variable and the accuracy as the dependent variable. All other parameters are held constant.

Model training learning curves. Displays the training and cross validations scores 

as well as the predicted probabilities versus actual target.

• The Random Forest model was able to predict whether a specific location was 
an asthma hotspot with 96.9% accuracy and an F1-score of 97.5%.

• The highest accuracies were observed in models with 110 estimators, 15 max 
depth, 2.5 minimum sample split, and 2.5 minimum sample leaf.

• Of the various features tested, distance to the nearest road was the most 
important factor, with PM2.5 levels the next most important

Areas of further research could include:

• Predicting asthma hotspots for the current year.

• Building a website or app that displays the hotspots in real time, so 
the results can be more easily accessible to the public.

• We created a Random Forest model to predict 
pediatric asthma hotspots in Massachusetts, using a 
variety of publicly-available data.

• The final model was able predict whether a specific 
location was an asthma hotspot with 96.9% accuracy.

• The model suggests that the most critical 
Environmental factors for identifying geographical 
asthma hotspots are distance to roads and 
particulate matter concentrations, especially PM2.5.

• The areas with the highest predicted asthma risk are 
the regions near Springfield and Greater Boston. 

• The final interpolated map of predicted asthma 
hotspots is below:

• This model can be used to help public policy experts, 
families, and especially children identify areas of high 

asthma risk, with the goal of aiding prevention and 
treatment efforts.

• Enriching the training dataset using additional features (such as 
ambient air temperature, average household income, demographic 
information, etc.), as well as additional historical data.

• Training additional models and fine-tuning to further improve results.

Data Ingestion 

API
Backend Server

Data 

Preprocessing Machine 

Learning Model

Database

Frontend 

Application
User
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Abstract

Aggregate environmental and pediatric data

METHODOLOGY RESULTS

Introduction

DISCUSSION

Advances in AI have shown promise in improving early disease 

detection, yet challenges remain, particularly in analyzing medical 

time series data like eGFR and glucose screenings from EHRs. These 

data are often noisy, lack interpretability, and exhibit demographic-

specific distributions. Our project focuses on characterizing the 

distribution of the data, identifying viable prediction time ranges, 

addressing data disparities, improving performance through 

imputation, and testing transformer models on medical time series 

data. By leveraging these models, we aim to facilitate earlier 

interventions and better healthcare outcomes.
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1) Characterize Data Distribution
Characterized the distributions of both the negative dataset and positive dataset.

2) Data Filtering and Imputation
Data was filtered by removing patients with a low number of lab 

results, filtering the months such that only results before the diagnosis 

date are kept, and removing / imputing outliers and invalid values. 

Various imputation methods were used such as KNN imputation,  

linear interpolation, mean imputation, and spline  interpolation.

Figure 3: Lab result filtering past a certain date to simulate diagnosing 3 months ahead.

Figure 4: Linear Imputation visualized for a specific positive patient

3) Simple Model Testing
Train simple models such as Random Forest, KNN, and XG Boost 

and test their performance.

Figure 5: Confusion matrix for KNN model.

•eGFR time series data is divided into fixed-length 

patches.

•Patches are converted into embeddings with added 

positional encodings to retain temporal information.

•Utilizes self-attention mechanisms to capture 

dependencies between different time patches.

•Multiple encoder layers process the embeddings to 

create a comprehensive feature representation.

•The pooled output embeddings are passed through a 

fully connected layer.

•The output layer classifies the time series data into the 

appropriate category (e.g., acute kidney failure).

•Cross-entropy loss is used for classification.

•Optimized with Adam optimizer

Time Series data for medical information has the potential to 

revolutionize medical diagnosis by predicting diseases such as acute 

kidney failure months before they get diagnosed. However, current 

methods of doing this suffer from issues such as noisiness. This 

project uses the Trinetx dataset to characterize eGFR (Estimated 

Glomerular Filtration Rate) data, perform data imputation, test the 

performance of simple models as a function of the prediction range, 

and test time series transformer models and their performance. 

Data imputation was able to increase model performance by up to 

3% in terms of the F1 score, and the models were able to obtain 

high accuracy for prediction ranges of up to 3 years. Further, 

transformer models were able to demonstrate effectiveness at 

classification tasks.

Figure 1: a) eGFR measurements for a healthy patient b) eGFR measurements

up to AKF diagnosis
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Figure 2: Lab result distributions for positive patients, negative patients, and total.

• Integrate various lab tests (e.g., glucose 

levels, blood pressure) to enhance prediction 

accuracy.

• Vision Time Series Transformers (ViTST) may 

be used to increase performance.

• Expand focus to include early detection of 

diseases like heart disease, diabetes, and 

chronic kidney disease.

• Develop demographic-specific models to 

improve robustness and reduce biases.

• Utilize self-supervised learning on extensive 

EHR data to create a comprehensive 

foundation model.

• Enhance interpretability by refining shapelet-

based methods and validating them with 

clinical studies.

Figure 6: F1 score of random forest model as the prediction time increases. Different 

imputation methods are plotted.

• Imputation methods such as KNN performed with 2-

3% increased f1 scores.

• 5% drop in f1 score due to increased time range 

predictions.

• Transformers have a similar f1 score to other simple 

models of ~70%

FUTURE WORK

• The relatively low drop in performance from 

increasing the time range suggests that the current 

models are not complex enough to capture all the 

time series information.

• The substantial improvement from imputation could 

lead to significant benefits for larger models, 

especially when applied to various datasets. 

• Data imputation helps equal the distributions for 

negative and positive datasets and thus increases the 

training dataset by a large proportion.

4) Testing Transformer Architecture

Figure 6:. Validation and training loss plot for Patch Time Series Transformer
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Introduction 

The growing need for accurate and comprehensive data on greenhouse gas emissions from wastewater 

treatment facilities has never been more pressing. As the world grapples with the challenges of climate 

change, the role of water resource recovery facilities (WRRFs) in both contributing to and mitigating 

emissions has gained significant attention. However, existing protocols, such as those outlined by the IPCC, 

often rely on emission factors and variables that lead to inaccuracies, including the overestimation of nitrous 

oxide (N₂O) and underestimation of methane (CH₄) emissions. Addressing these gaps requires a 

comprehensive approach. We need to collect data for each wastewater treatment facility, including detailed 

operational parameters, process inputs, and corresponding emissions data. However, gathering the initial 

preexisting information for each facility can be a daunting task. This is where the web scraper, integrated 

with a large language model (LLM), comes into play. We want to test the hypothesis that it is possible to 

gather information on wastewater treatment facilities using an LLM-based web scraper. It will gather and 

synthesize information on wastewater treatment facilities across the United States and lay the groundwork 

for a more accurate inventory of emissions within this sector. There are various types of data that need to 

be collected for each facility. These include publicly available greenhouse gas emissions data, contact 

information, net zero by 2050 plan, whether the region’s greenhouse gas inventory features wastewater, and 

whether the region’s climate action plan features wastewater. 

Methodology 

The scraper is composed of three parts — a content finder, an interpreter, and an LLM.  

Figure 1. Displays the methodology of the scraper. 

The content finder is made using the Selenium library. It searches and filters content until it finds web pages 

suitable for the question. Then, the web page is fed to the interpreter, which turns the web page into suitable 



text that LLM can read. Different types of searches typically find other forms of web pages, so the 

interpreter needs to be flexible in accounting. The LLM may occasionally call back to the content finder to 

view a link on the web page. The system is called over every facility for specific questions.  

Data 

 

Figure 2. A) Displays the percentage of treatment plants the fulfill the given criteria. B) Displays a Venn 

diagram of the scraped contact information of treatment plants. 

The web scraper fulfilled all tasks except finding publicly available greenhouse gas inventories. 

Conclusion 

We successfully created a web scraper that utilizes LLMs to find information on Wastewater Treatment 

Facilities. However, we need help finding data for more hidden information, such as public greenhouse gas 

inventories. This either shows the limitations of such methods or that such data does not exist in the public 

domain, and helps motivate the greater project.  
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